ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины Б1.О.8 «ФИЗИКА»

для направления подготовки 08.03.01 «Строительство»

по профилю «Водоснабжение и водоотведение», «Промышленное и гражданское строительство»

Форма обучения – очная, очно-заочная

«Автомобильные дороги»

Форма обучения – очная

ЛИСТ СОГЛАСОВАНИЙ

Оценочные материалы рассмотрены и утверждены на заседании кафедры «Физика» Протокол № 5 от 25 декабря 2024 г.

Заведующий кафедрой «Физика» 25 декабря 2024 г.	 Е.Н. Бодунов
СОГЛАСОВАНО	
Руководитель ОПОП ВО по профилю «Промышленное и гражданское строительство» 25 декабря 2024 г.	 Г.А. Богданова
Руководитель ОПОП ВО по профилю «Водоснабжение и водоотведение» 25 декабря 2024 г.	 Н.В. Твардовская
Руководитель ОПОП ВО по профилю «Автомобильные дороги» 25 декабря 2024 г.	 А.Ф. Колос

1. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы

Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы, приведены в п. 2 рабочей программы.

2. Задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций в процессе освоения основной профессиональной образовательной программы

Перечень материалов, необходимых для оценки индикатора достижения компетенций, приведен в таблице 2.1 (для очной и очно-заочной форм обучения)

Таблица 2.1

Индикатор достижения компетенции	Планируемые результаты обучения	Материалы, необходимые для оценки индикатора достижения компетенции
	бен решать задачи профессиональной веских и практических основ естествен также математического аппарата	
ОПК-1.1.1. Знает теоретические и практические основы естественных и технических наук, а также математического аппарата для решения задач профессиональной деятельности.	Обучающийся способен продемонстрировать знания по следующим разделам физики: механика, молекулярная физика и термодинамика, электростатика, электрический ток, магнетизм, волновая оптика, строение атома и ядра.	Тестовые задания Вопросы к экзамену № 1-3, 11, 12, 16, 17, 23, 25, 32-38.
ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и технических наук, а также математического аппарата	Обучающийся умеет: применять теоретические и практические основы физики для решения практических задач в строительстве (применительно к зданиям, сооружениям, инженерным коммуникациям).	Тестовые задания. Лабораторные работы № 1-6 (для очно-заочной формы обучения лаб. раб.1-3). Вопросы к экзамену № 4-7, 13, 14, 18-20, 26-29.
ОПК-1.3.1. Владеет теоретическими и практическими основами естественных и технических наук, а также математического аппарата в объеме, необходимом для решения задач профессиональной деятельности	Обучающийся владеет: навыками проведения экспериментального исследования применительно к элементам строительной отрасли.	Тестовые задания. Лабораторные работы № 1-6 (для очно-заочной формы обучения лаб. раб. 1-3). Вопросы к экзамену № 8-10, 15, 21, 22, 24, 30, 31.

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания.

Перечень и содержание типовых задач/контрольных работ и т.д.

Решение типовых задач и выполнение контрольных работ для очной формы обучения не предусмотрено. Перечень и содержание контрольных работ для очно-заочной формы обучения приведены на сайте ПГУПС https://sdo.pgups.ru/

Перечень и содержание лабораторных работ (для очной и очно-заочной форм обучения)

Для очной формы: обучающийся выполняет 6 лабораторных работ по выбору преподавателя; для очно-заочной формы: обучающийся выполняет 3 лабораторных работы по выбору преподавателя

- 1. Лабораторная работа № 100. Обработка результатов лабораторного физического эксперимента. 2016. 33 с.
- 2. Лабораторная работа № 103. Определение коэффициента поверхностного натяжения воды. 2012. 9 с.
- 3. Лабораторная работа № 106. Определение коэффициента трения среды методом падающего шарика. 2019. 34 с.
- 4. Лабораторная работа № 111. Изучение закона сохранения момента импульса. 2017. 18 с.
- 5. Лабораторная работа № 110. Экспериментальная проверка закона сохранения импульса. 2010. 11 с.
- 6. Лабораторная работа № 112. Распространение звуковых волн. 2011. 11 с.
- 7. Лабораторная работа № 113. Интерференция звуковых волн. 2011. 9 с.
- 8. Лабораторная работа № 114. Определение коэффициента теплопроводности тел. 2019. 34 с.
- 9. Лабораторная работа № 118. Определение коэффициента трения методом наклонного маятника. 2013. 10 с.
- 10. Лабораторная работа № 119. Определение скорости пули методом крутильного баллистического маятника. 2012. 8 с.
- 11. Лабораторная работа № 120. Изучение движения маятника Максвелла. 2011. 7 с.
- 12. Лабораторная работа № 128. Определение удельной теплоемкости жидкости. 2014. 5 с.
- 13. Лабораторная работа № 131. Тепловое расширение твердых тел. 2012. 6 с.
- 14. Лабораторная работа № 137. Внутреннее трение в газах. 2019. 34 с.
- 15. Лабораторная работа № 206. Изучение магнитного поля кругового тока. 2014. 9 с.
- 16. Лабораторная работа № 208. Определение электродвижущей силы и внутреннего сопротивления источника тока методом компенсации. 2010.-8 с.
- 17. Лабораторная работа № 214. Релаксационные колебания в генераторе с неоновой лампой. 2012. 11 с.
- 18. Лабораторная работа № 224. Определение температурного коэффициента сопротивления металлического проводника. 2013. 11 с.
- 19. Лабораторная работа № 227. Исследование электростатических полей. 2017. 9 с.
- 20. Лабораторная работа № 228. Исследование зависимости сопротивления полупроводника от температуры. 2016. 8 с.
- 21. Лабораторная работа № 236. Изучение явления взаимной индукции. 2010. 10 с.
- 22. Лабораторная работа № 237. Изучение свободных электромагнитных колебаний в колебательном контуре. 2012. 8 с.
- 23. Лабораторная работа № 242. Определение емкости конденсатора. 2015. 7 с.
- 24. Лабораторная работа № 243. Исследование режимов работы источника электрической энергии. 2017. 7 с
- 25. Лабораторная работа № 303. Основы спектрального анализа. 2012. 8 с.
- 26. Лабораторная работа № 304. Исследование дифракции Фраунгофера. 2017. 18 с.

- 27. Лабораторная работа № 306. Исследование зависимости силы фототока от интенсивности освещения. 2014. 7 с.
- 28. Лабораторная работа № 307. Дифракция плоской волны на дифракционной решетке. 2012. 11 с.
- 29. Лабораторная работа № 309. Проверка закона Малюса. 2014. 7 с.
- 30. Лабораторная работа № 312. Определение электродвижущей силы элемента с запирающим слоем. 2013. 13 с.
- 31. Лабораторная работа № 318. Определение длины волны света при помощи бипризмы. 2016. 10 с.
- 32. Лабораторная работа № 304. Определение плотности материала с помощью бета-излучения 2017. 18 с.
- 33. Лабораторная работа № 322. Исследование газового счетчика. 2017. 9 с.
- 34. Лабораторная работа № 324. Определение эффективности счетной установки и активности радиоактивного источника. 2016. 10 с.
- 35. Лабораторная работа № 326. Аннигиляция электронно-позитронных пар. 2015. 9 с.
- 36. Лабораторная работа № 331. Поглощение бета-излучения различными веществами. 2012. 12 с.
- 37. Лабораторная работа № 304. Определение плотности материала с помощью бета-излучения 2017. 18 с.
- 38. Лабораторная работа № 343. Исследование абсолютно черного тела. 2013. 11 с.
- 39. Лабораторная работа № 346. Исследование люминофоров. 2016. 12 с.

Тестовые задания

№	Текст вопроса	№	Варианты ответа
	Выбрать правильный ответ		
	D	1	4.35 m/c
1	Радиус – вектор частицы	2	5 м/с
1	$ec{r} = 4tec{e}_x + 0.15t^2ec{e}_y + 0.2ec{e}_z$, м. Найти модуль	3	30 м/с
	скорости частицы к концу десятой секунды ее движения.	4	55 м/с
	II 10	1	5 Гц
	Через 10 с после включения вентилятор, вращаясь равноускоренно, сделал $N = 75$ оборотов. С какой	2	10 Гц
2	частотой стал вращаться вентилятор к этому моменту времени.	3	12 Гц
		4	15 Гц
		5	25 Гц
	Какую работу совершает равнодействующая всех сил	1	πRF
3	какую работу совершает равнодействующая всех сил (F) , приложенных к телу, равномерно движущемуся по	2	$2\pi RF$
3	окружности радиуса <i>R</i> ?	3	$\pi R^2 F$
		4	0
	Момент импульса твердого тела L, вращающегося	1	$L = J\omega$
	вокруг оси с угловой скоростью ω , и его момент	2	$J = L\omega$,
4	инерции J относительно этой же оси связаны	3	$L = J\omega^2$
	равенством	4	$J = L\omega^2$
		1	изохорная C_V ,
5	Какая из молярных теплоемкостей идеального газа больше	2	изобарная C_P ,
	<u>-</u>		они равны.
6		1	увеличилась в 2 раза

	Расстояние между двумя положительными зарядами	2	уменьшилась в 2 раза
	увеличилось в 2 раза. При этом сила их	3	уменьшилась в 4 раза
	электростатического взаимодействия	4	уменьшилась в 1.4 раза
		1	$\varepsilon = -\frac{d\Phi}{dt}$
_	Электродвижущая сила электромагнитной индукции \mathcal{E}	2	$\varepsilon = LI$
7	равна (Φ - магнитный поток, I - сила тока, L - коэффициент самоиндукции, t - время)	3	$\varepsilon = \frac{1}{2}LI^2$
		4	$\varepsilon = \Phi I$
	П 1 2 В	1	F = IBl
	При силе тока I , магнитной индукции B , длине	2	$F = I^2 B l \sin \alpha$
8	проводника с током l и угле между направлением	3	$F = IlB \sin \alpha$
	магнитной индукции и направлением тока в проводнике α , модуль силы Ампера F равен	4	$F = IlB\cos\alpha$
	а, модуль силы түштера т равен	5	$F = Il^2 B \sin \alpha$
	Работа dA по перемещению проводника с током I в магнит	1	$dA = Ild\Phi$
9	поле равна $(l-длина проводника, S-площадь, пересекаем проводником при его перемещении в магнитном поле, d\Phi$		$dA = \frac{I}{l}d\Phi$
	поток вектора магнитной индукции, пронизывающий эту	3	$dA = ILSd\Phi$
	площадь)	4	$dA = Id\Phi$
10	Вектор напряженности электрического поля поля полектромагнитной волне направлен	1 2	параллельно скорости распространения волны $\mathbf{c} (\mathbf{E} \ \mathbf{c})$ и перпендикулярно вектору напряженности магнитного поля \mathbf{H} ($\mathbf{E} \perp \mathbf{H}$) $\mathbf{E} \perp \mathbf{c}$ и $\mathbf{E} \ \mathbf{H}$
		3	Е⊥с и Е⊥Н
		4	Е с и Е Н
		1	$N = N_0 e^{-\lambda x}$
	Закон радиоактивного распада имеет вид (N – число	2	$N = N_0 e^{\lambda x}$
11	атомов радиоактивного вещества в момент времени t , N_0 - число атомов радиоактивного вещества в начальный	3	$N = \frac{N_0}{1 + \lambda x}$
	момент времени, λ — постоянная радиоактивного распада)	4	$N = \frac{N_0}{1 + 2\lambda x}$

Материалы для промежуточной аттестации

<u>№</u>	Перечень вопросов к экзамену	Индикаторы		
		достижения		
		компетенции		
	Механика			
1	Системы отсчета. Радиус-вектор и координаты материальной точки.	ОПК-1.1.1.		
	Траектория, путь, векторы перемещения и скорости. Ускорение,			
	нормальная и тангенциальная составляющие ускорения. Движение по			

	ORNAMIA ORNI HOLIGANI IA MODA HUMORI I MEGH HOROMORA MERORGA ANDROS	
	окружности: полярные координаты, угол поворота, угловая скорость и угловое ускорение, период и частота.	
2	Импульс тела и системы тел. Закон сохранения импульса. Центр	ОПК-1.1.1.
2	инерции. Движение центра масс системы тел.	OHK-1.1.1.
3	Законы Ньютона. Работа постоянной и переменной сил. Мощность.	ОПК-1.1.1.
	Кинетическая энергия. Консервативные и диссипативные силы.	
	Потенциальная энергия. Потенциальная энергия в поле силы тяготения и	
	упругой силы. Полная механическая энергия и закон ее сохранения.	
4	Момент импульса тела и системы тел. Момент импульса материальной	ОПК-1.2.1.
	точки. Момент импульса относительно оси.	
5	Момент силы. Момент силы относительно оси. Взаимосвязь момента	ОПК-1.2.1.
	импульса и момента силы.	
6	Момент импульса системы частиц и момент силы. Закон сохранения	ОПК-1.2.1.
	момента импульса.	
7	Вращение твердого тела вокруг неподвижной оси: момент импульса,	ОПК-1.2.1.
	момент инерции, теорема Штейнера, уравнение движения. Кинетическая	
8	энергия вращения.	ОПИ 1 2 1
8	Классификация колебаний. Гармонические колебания. Уравнение	ОПК-1.3.1.
	гармонических колебаний и их характеристики. Пружинный маятник. Уравнение колебаний пружинного маятника. Скорость, ускорение,	
	энергия гармонических колебаний.	
9	Затухающие колебания. Уравнение колебаний. Амплитуда, частота,	ОПК-1.3.1.
	коэффициент затухания.	
10	Вынужденные колебания. Уравнение колебаний. Амплитуда, частота.	ОПК-1.3.1.
	Явление резонанса.	
•	Молекулярная физика и термодинамика	
11	Идеальный газ. Уравнение Менделеева-Клапейрона. Газовая постоянная,	ОПК-1.1.1.
	число Авогадро, молекулярный вес, молярный объем, постоянная	
	Больцмана.	
12	Молекулярно-кинетическая трактовка давления и температуры.	ОПК-1.1.1.
13	Распределение молекул по скоростям. Функция Максвелла.	ОПК-1.2.1.
14	Основы термодинамики. Внутренняя энергия. Число степеней свободы.	ОПК-1.2.1.
	Закон равномерного распределения энергии по степеням свободы.	
15	Работа в термодинамике. Количество теплоты. Теплоемкость вещества.	ОПК-1.3.1.
	Первый закон термодинамики.	
1.0	Электростатика	OHK 1 1 1
16	Электрические заряды. Закон Кулона. Электрическое поле.	ОПК-1.1.1.
	Напряженность поля. Напряженность поля точечного заряда. Принцип суперпозиции. Графическое изображение.	
17	Поток вектора электрического смещения. Теорема Остроградского-	ОПК-1.1.1.
1/	Гаусса.	OIIIX-1.1.1.
18	Потенциал электрического поля (точечный заряд и система точечных	ОПК-1.2.1.
10	зарядов). Разность потенциалов и работа по перемещению заряда в	
	электрическом поле.	
19	Связь между потенциалом и напряженностью электрического поля.	ОПК-1.2.1.
20	Электроемкость (определение, единицы измерения). Емкость	ОПК-1.2.1.
-	конденсатора (плоский, сферический).	
21	Электроемкость (определение, единицы измерения). Емкость	ОПК-1.3.1.
	конденсатора (плоский, сферический).	
22	Энергия конденсатора и электрического поля. Плотность энергии	ОПК-1.3.1.
	электрического поля	

	Электрический ток				
23	Постоянный электрический ток. Основные определения и величины:	ОПК-1.1.1.			
	носители тока, направление, сила тока, плотность тока, единицы				
	измерения.				
24	Основные законы постоянного тока: законы Ома и Джоуля-Ленца.	ОПК-1.3.1.			
	Зависимость сопротивления от параметров проводника и температуры.				
	Магнетизм				
25	Магнитное поле и его характеристики: индукция магнитного поля,	ОПК-1.1.1.			
	силовые линии. Магнитное поле и его характеристики. Графическое				
	изображение. Свойства силовых линий (примеры). Единицы измерения.	0774.4.0.4			
26	Закон Био-Савара-Лапласа. Расчет магнитных полей с помощью закона	ОПК-1.2.1.			
	Био-Савара-Лапласа.	0774 4 0 4			
27	Сила Ампера. Сила Лоренца.	ОПК-1.2.1.			
28	Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.	ОПК-1.2.1.			
29	Работа по перемещению проводника и контура с током в магнитном поле.	ОПК-1.2.1.			
30	Электромагнитная индукция. Опыты Фарадея. Закон электромагнитной	ОПК-1.3.1.			
	индукции.				
31	Индуктивность контура.	ОПК-1.3.1.			
	Волновая оптика				
32	Волны (определение). Электромагнитная волна. Ее основные	ОПК-1.1.1.			
	качественные характеристики.				
33	Интерференция света. Интерференция когерентных световых волн.	ОПК-1.1.1.			
	Разность фаз и разность хода. Получение когерентных волн и опыт				
	Юнга.				
34	Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.	ОПК-1.1.1.			
	Дифракция на круглом отверстии и диске.				
35	Поглощение света. Закон Бугера-Ламберта-Бера	ОПК-1.1.1.			
36	Поляризация света. Законы Малюса и Брюстера.	ОПК-1.1.1.			
	Строение атома и ядра				
37	Размер и состав атома и ядра. Ядерные силы	ОПК-1.1.1.			
38	Радиоактивность. Закон радиоактивного распада.	ОПК-1.1.1.			
	<u>-</u>	ı			

3. Описание показателей и критериев оценивания индикаторов достижения компетенций, описание шкал оценивания

Показатель оценивания — описание оцениваемых основных параметров процесса или результата деятельности.

Критерий оценивания – признак, на основании которого проводится оценка по показателю.

Шкала оценивания – порядок преобразования оцениваемых параметров процесса или результата деятельности в баллы.

Показатели, критерии и шкала оценивания заданий текущего контроля приведены в таблице 3.1.

Таблица 3.1

Для очной формы обучения

№ п/п	Материалы, необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцениван ия
			Работа выполнена правильно без замечаний	5
		Правильность выполнения	Работа выполнена правильно с замечаниями	1 - 4
	1 Лабораторная работа (№ 1–6)	лабораторной работы*	Работа выполнена неправильно	0
1			Даны правильные ответы на контрольные вопросы методички.	3
		Защита лабораторной работы	Ответы на вопросы не достаточно полные.	1-2
			Не даны ответы на контрольные вопросы	0
		Итого максимальное в	аксимальное количество баллов за	
		выполнение одной лаб		8
Итого максимальное количество баллов за лабораторные работы (6 лаб. работ в модуле)				48
2	Тестовое задание	Правильность ответа	Выбраны все правильные ответы	2
	(11 вопросов)	на вопросы теста	Выбраны неправильные ответы	0
Итого максимальное количество баллов за тестовое задание				22
ИТОГО максимальное количество баллов			70	

^{*} Студенту необходимо изучить учебно-методические указания к лабораторной работе, на основании которых необходимо подготовить заготовку, содержащую название лабораторной работы, цель, приборы, которые используются при выполнении экспериментальной части, а также все необходимые формулы, по которым в дальнейшем будут проводиться вычисления, таблицы для записи результатов эксперимента. Лабораторную работу разрешается выполнять только после допуска, который учащийся получает после собеседования с преподавателем. Допуск фиксируется преподавателем в учебном журнале и на титульном листе работы. Затем учащийся знакомится с установкой, собирает схему и выполняет измерения. Характеристика приборов и результаты измерения вносятся в отчет. На следующем занятии после предъявления отчета преподавателю происходит защита работы: проверяется правильность выполнения работы, учащийся отвечает на контрольные вопросы, помещенные в конце методических указаний.

Таблица 3.2 Для очно-заочной формы обучения (*кроме профиля «Автомобильные дороги»*)

№ п/п	Материалы, необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцениван ия
1	Лабораторная работа	Правильность	Работа выполнена правильно без замечаний	10
$\frac{1}{(N_0 \cdot 1 \cdot 2)}$	выполнения лабораторной работы*	Работа выполнена правильно с замечаниями	1 - 9	

№ п/п	Материалы, необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцениван ия
			Работа выполнена неправильно	0
		2	Даны правильные ответы на контрольные вопросы методички.	6
		работы	Ответы на вопросы не достаточно полные.	1-5
			Не даны ответы на контрольные вопросы	0
		Итого максимальное в выполнение одной лаб		16
	о максимальное колич цуле)	ество баллов за лаборат	орные работы (3 лаб. работы	48
2	Тестовое задание	Правильность ответа	Выбраны все правильные ответы	2
	(11 вопросов)	на вопросы теста	Выбраны неправильные ответы	0
Итого максимальное количество баллов за тестовое задание			22	
ИТОГО максимальное количество баллов			70	

4. Методические материалы, определяющие процедуры оценивания индикаторов достижения компетенций

Процедура оценивания индикаторов достижения компетенций представлена в таблице 4.1.

Формирование рейтинговой оценки по дисциплине для очной и очно-заочной форм обучения

Таблица 4.1.

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль успеваемости *	Лабораторная работа, тестовые задания	70	Количество баллов определяется в соответствии с таблицей 3.1 Допуск к экзамену ≥ 50 баллов
2. Промежуточная аттестация	Перечень вопросов к экзамену,	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов;

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания	
			– не получены ответы на	
			вопросы или вопросы не	
			раскрыты -010 баллов.	
	ИТОГО	100		
	«Отлично» - 86-100 ба	ллов		
3. Итоговая	«Хорошо» - 75-85 баллов			
оценка	«Удовлетворительно» - 60-74 баллов			
	«Неудовлетворительно	» - менее 59 баллов ((вкл.)	

^{*} Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета.

Процедура проведения экзамена осуществляется в форме письменного ответа на вопросы билета.

Билет на экзамен содержит 2-3 вопроса (из перечня вопросов промежуточной аттестации п. 2).

Преподаватель имеет право после проверки письменных ответов на вопросы задавать студенту в устной или письменной форме уточняющие вопросы.

5. Оценочные средства для диагностической работы по результатам освоения дисциплины

Проверка остаточных знаний обучающихся по дисциплине ведется с помощью оценочных материалов текущего и промежуточного контроля по проверке знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций.

Оценочные задания для формирования диагностической работы по результатам освоения дисциплины (модуля) приведены в таблице 5.1

Таблица 5.1

Индикатор достижения компетенции Знает - 1; Умеет- 2; Опыт деятельности - 3 (владеет/имеет навыки)	Содержание задания	Варианты ответа на вопросы тестовых заданий (для заданий закрытого типа)	Эталон ответа
	N	Модуль 1	
ОПК-1. Способен реша	ть задачи профессиональной деятельности н	на основе использования теоретических и практ	гических основ
	еских наук, а также математического аппара	та	
ОПК-1.1.1	Продемонстрируйте знание свойств	а) изменение модуля скорости,	б) изменение направления
Знает теоретические	ускорения:	б) изменение направления скорости,	скорости
и практические	Нормальная составляющая ускорения	в) изменение модуля скорости и ее	
основы естественных	характеризует	направления.	
и технических наук, а	Продемонстрируйте знание законов	a) $\mathbf{F} = m/\mathbf{a}$, 6) $\mathbf{a} = \mathbf{F}/m$, B) $\mathbf{F} = m \frac{d\mathbf{v}}{dt}$, Γ) $\mathbf{F} = \frac{\mathbf{p}}{t}$, Π) $\mathbf{F} = \frac{d\mathbf{p}}{dt}$, e) $\mathbf{F}t = \mathbf{p}$, Π) $\mathbf{F} = \frac{d\mathbf{r}}{dt}$	$\mathbf{F} = m \frac{d\mathbf{v}}{dt} ,$ $\mathbf{F} = \frac{d\mathbf{p}}{dt}$
также	Ньютона:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{r} - \frac{d\mathbf{p}}{\mathbf{p}}$
математического	Второй закон Ньютона, связывающий	$\left(\frac{1}{t}, \mathcal{A}\right) \mathbf{F} = \frac{1}{dt}, \text{e) } \mathbf{F}t = \mathbf{p}, \text{x) } \mathbf{p} = \frac{1}{dt}$	$\mathbf{F} - \frac{1}{dt}$
аппарата для решения	ускорение а, с которым двигается тело, с		
задач	его массой m , силой \mathbf{F} , действующей на		
профессиональной	тело, скоростью тела v и импульсом p		
деятельности.	уравнением (указать все правильные		
	ответы):		<i>a</i>
	Продемонстрируйте знание законов	a) $L_Z = I\omega_Z$, 6) $M_Z = L_Z \beta$, B) $L_Z \beta = M_Z \omega_Z$,	$ \begin{vmatrix} I \frac{d \omega_Z}{dt} &= M_Z, \\ I \beta &= M_Z \end{vmatrix} $
	вращательного движения:	Γ) $I\beta = M_Z$,	$I\beta = M_Z$
	Основное уравнение динамики	$A) I \frac{d \omega_Z}{dt} = M_Z$, –
	вращательного движения тела	ut	
	относительно некоторой оси Z имеет вид		
	$(L_Z$ - момент импульса тела относительно		
	оси Z, I – его момент инерции, ω_Z -		
	угловая скорость, β_Z – угловое ускорение,		
	M_Z – суммарный момент внешних сил)		
	Продемонстрируйте знание законов		Заключается в
	колебательного движения:		возрастании амплитуды
	В чем заключается явление резонанса?		вынужденных колебаний

Продемонстрируйте знание законов идеального газа: Состояние идеального газа описывается уравнением Менделеева-Клайперона	а) $pV = (\mu/M)RT$, 6) $p/V = (\mu/M)RT$, 8) $p/V = (M/\mu)RT$, г) $pV = (M/\mu)RT$, д) $pT = (M/\mu)RV$, где p — давление, V — объем, M — масса газа, μ — молярная масса, T — температура, R — газовая постоянная. Указать правильные ответы.	при совпадении частоты вынуждающей силы с частотой собственных колебаний. $pV = (M/\mu)RT,$
Продемонстрируйте знание законов электростатического поля: Закон Кулона определяет силу взаимодействия двух точечных зарядов, находящихся на некотором расстоянии друг от друга, которая имеет вид:	a) $F = (q_1 - q_2)/(4\pi\epsilon\epsilon_0 r)$, 6) $F = (q_1 - q_2)/(4\pi\epsilon\epsilon_0 r^2)$, B) $F = (q_1 + q_2)/(4\pi\epsilon\epsilon_0 r)$, $F = (q_1 + q_2)/(4\pi\epsilon\epsilon_0 r^2)$, $F = (q_1 \times q_2)/(4\pi\epsilon\epsilon_0 r)$, e) $F = (q_1 \times q_2)/(4\pi\epsilon\epsilon_0 r^2)$	e) $F = (q_1 \times q_2)/(4\pi\epsilon\epsilon_0 r^2)$
Продемонстрируйте знание характеристик электростатического поля: Формула $\varphi = q/E$, где E — потенциальная энергия заряда q в электрическом поле, определяет:	а) напряженность электрического поля, б) потенциал электрического поля, в) энергию электрического поля, г) угловую скорость распространения электрического поля.	потенциал электрического поля
Продемонстрируйте знание закона Ома: Закон Ома в дифференциальной форме имеет вид	a) $\vec{j} = \rho \vec{E}$, б) $\vec{j} = \frac{1}{\rho} \vec{E}$, в) $\vec{j} = \rho^2 \vec{E}$, г) $\vec{j} = \frac{1}{\rho^2} \vec{E}$, где \vec{j} - вектор плотности тока, \vec{E} - напряженность электрического поля, ρ -	$\vec{j} = \frac{1}{\rho}\vec{E}$

Продемонстрируйте знание о законов магнетизма: Электродвижущая сила электромагнитной индукции \mathcal{E} р	а) $\varepsilon = LI$, б) $\varepsilon = \frac{1}{2}LI^2$, в) $\varepsilon = -\frac{1}{dt}$, г) $\varepsilon = -\frac{1}{dt}$ $\varepsilon = \Phi I$ где Φ - магнитный поток, I - сила тока, L - коэффициент самоиндукции, t время.
Продемонстрируйте знание о законов магнетизма: Сила Ампера имеет вид (F – сид длина проводника, q – заряд, I - тока, B – индукция магнитного угол между направлением силы направлением вектора магнитно индукции \mathbf{B})	в) $F=Il/(B)\cos\alpha$, г) $F=IlB\sin\alpha$, д) $F=(q/l)B\sin\alpha$.
Продемонстрируйте знание о свойств электромагнитной во Вектор напряженности электри поля E в электромагнитной вол направлен	пны : волны \mathbf{c} ($\mathbf{E} \ \mathbf{c}$) и перпендикулярно вектору напряженности магнитного поля \mathbf{H} ($\mathbf{E} \perp \mathbf{H}$),
Продемонстрируйте знание п когерентности: Какое явление называется интерференцией световых (электромагнитных) волн?	

Продемонстрируйте знание	а) вектор напряженности электрического	вектор напряженности
поляризационных свойств	поля Е имеет всевозможные	электрического поля Е
естественного света:	равновероятные ориентации относительно	имеет всевозможные
Естественный свет – свет, в котором:	светового луча,	равновероятные
	б) вектор Е колеблется только в одном	ориентации относительно
	направлении, перпендикулярном лучу,	светового луча
	в) вектор Е изменяется со временем так, что	
	его конец описывает эллипс, лежащий в	
	плоскости, перпендикулярном лучу.	
Продемонстрируйте знание закона	а) длины волны света,	интенсивности света.
поглощения света:	б) химической природы и состояния	
В законе Бугера $I = I_0 e^{-\alpha x}$, где I и I_0	вещества,	
интенсивности плоской	г) интенсивности света.	
монохроматической световой волны	Исключить неправильный ответ.	
соответственно на входе и выходе слоя		
поглощающего вещества толщиной x ,		
коэффициент поглощения α зависит от		
Продемонстрируйте знание о		Атом состоит из ядра и
строении атома:		окружающего его облака
Из каких частиц состоит атом? Где		электронов. Масса атома
сосредоточена масса атома?		сосредоточена в ядре.
Продемонстрируйте знание о		Ядро состоит из
строении ядра:		нейтронов и протонов.
Из каких частиц состоит ядро атома?		
Продемонстрируйте знание закона	a) $N = N_0 e^{\lambda x}$, 6) $N = N_0 e^{-\lambda x}$,	$N = N_0 e^{-\lambda x}$
радиоактивного распада:		U
Закон радиоактивного распада имеет вид	B) $N = \frac{N_0}{1 + \lambda x}$, r) $N = \frac{N_0}{1 + 2\lambda x}$,	
	где N — число атомов радиоактивного	
	вещества в момент времени t , N_0 - число	
	атомов радиоактивного вещества в	
	начальный момент времени, λ – постоянная	
	радиоактивного распада.	

ОПК-1.2.1	Продемонстрируйте умение	а) 5 кг м/с, б) 10 кг м/с,	200 кг м/с
Умеет решать задачи	вычислять импульс, полученный телом	в) 15 кг м/с, г) 20 кг м/с,	
профессиональной	при столкновении:	д) 100 кг м/с, е) 200 кг м/с, ж) ж) 500 кг м/с.	p=2mv=2*10*10=
деятельности с	Тележка массой 10 кг двигается со		=200
использованием	скоростью 10 м/с и налетает на стенку		
теоретических и	под углом 90° к поверхности стенки. В		
практических основ	результате упругого столкновения стенка		
естественных и технических наук, а	получает импульс.		
также математического	Продемонстрируйте умение	а) 1000 Дж, б) 2000 Дж,	10000 Дж
аппарата	вычислять энергию вращения:	г) 10000 Дж, д) 20000 Дж	, ,
1	Колесо вращается с угловой скоростью		$10^{2}*200/2=10000$
	10,0 рад/с. Момент инерции колеса 200 кг		
	м ² . Чему равна энергия вращения колеса?		
	Продемонстрируйте умение	а) 5 Дж, б) 20 Дж, г) 100 Дж, д) 2000 Дж, е)	2000 Дж
	вычислять работу:	5000 Дж, ж) 10000 Дж	
	Моторизированная тележка, двигаясь		
	равномерно, преодолела путь 100 м. Сила		
	трения равна 20 Н. Чему равна работа,		
	совершенная двигателем тележки на этом		
	пути?		
	Продемонстрируйте умение	Внутренняя энергия	внутренняя энергия
	вычислять изменение внутренней	а) уменьшится в 2 раза, б) не изменится, в)	уменьшилась в 2 раза
	энергии газа:	увеличится в 2 раза, г) увеличится в 18 раз	
	В сосуде находится идеальный газ при		
	температуре 600 К. В результате		
	охлаждения его температура снизилась		
	до 300 К. Как изменилась внутренняя		
	энергия газа? Записать правильный ответ.		
	Продемонстрируйте умение		14 мкФ
	вычислять емкость батареи		
	конденсаторов:		2+5+7=14
	Три конденсатора емкостью 2, 5 и 7 мкФ		
	включены в цепь параллельно. Чему		

равно общая емкость батареи		
конденсаторов?		
Продемонстрируйте умение навыками	а) не изменится, б) уменьшится в 4 раза,	г) увеличится в 3 раза
вычислять силу Ампера:	в) увеличится в 2 раза,	
Во сколько раз увеличится сила Ампера,	г) увеличится в 4 раза	
действующая на проводник с током,		
помещенным в магнитное поле, если		
увеличить силу тока в нем в 4 раза?		
Продемонстрируйте умение		Увеличится в 3 раза
вычислять силу электромагнитной		
индукции:		
Во сколько раз изменится		
электродвижущая сила электромагнитной		
индукции в проводящем контуре, если		
скорость изменения магнитного потока		
через ее площадь увеличится с 25 Вб/с до		
75 B6/c?		
Продемонстрируйте умение оценить	a) $I = I_0$, б) $I = 0$, в) $I = 2I_0$,	$ д) I = 4I_0 $
интенсивность двух когерентных волн:	Γ) $I = 3I_0$, д) $I = 4I_0$.	
Две синусоидальные когерентные волны		$I^{1/2} = (I_1)^{1/2} + (I_2)^{1/2} = 2(I_0)^{1/2}$
с одной поляризацией накладываются		
друг на друга. Интенсивности обеих		
волн равны $(I_1 = I_2 = I_0)$, фазы волн в месте		
наложения различаются на 2π.		
Интенсивность результирующей волны I		
равна:		
Продемонстрируйте умение оценивать	а) 1 см ⁻¹ , б) 10 см, в) 100 м,	$\alpha = 100 \text{ m}^{-1}$
интенсивность волны, прошедшей слой	г) 10 м ⁻¹ , д) 100 м ⁻¹	
поглощающего вещества:		$e^{-1} = e^{-\alpha \times 0.01}, \ \alpha = 1/0.01 =$
Чему равен коэффициент поглощения		100
среды α толщиной 1 см, если		
интенсивность света, прошедшего через		
среду уменьшилась в е раз?		

	Продемонстрируйте умение использовать знания о строении ядра: Ядро состоит из 92 протонов и 144 нейтронов. В результате испускания 2 альфа-частиц и 1 вета-частицы образовалось новое ядро. Сколько протонов и нейтронов оно содержит? Продемонстрировать умение	а) -1.6×10 ⁻¹⁹ Кл, б) -3.2×10 ⁻¹⁹ Кл,	Протонов = 89, нейтронов = 140 $92 - 2 \times 2 + 1 = 89$ $144 - 2 \times 2 = 140$ г) $+3.2 \times 10^{-19}$ Кл
	использовать знания о строении атома: Чему равен заряд двукратно ионизированного атома гелия?	в) +1.6×10 ⁻¹⁹ Кл, г) +3.2×10 ⁻¹⁹ Кл, д) 0	20 202
	Продемонстрируйте умение вычислять количество радиоактивного элемента через определенное время: Период полураспада некоторого радиоактивного элемента составляет 10 мин. Через какое время количество этого элемента уменьшится в 4 раза?	а) 5 мин, б) 10 мин, в) 15 мин, г) 20 мин, д) 40 мин.	20 мин 10*2=20
ОПК-1.3.1. Владеет теоретическими и практическими основами естественных и технических наук, а также математического аппарата в объеме, необходимом для	Продемонстрируйте владение навыками вычислять импульс тела: Шарик массой 1 г летит со скоростью 1000 м/с и налетает на стенку под углом 30° к поверхности стенки. В результате упругого столкновения стенка получает импульс	a) 0.5 кг м/с, б) 0.71 кг м/с, в) 0.87 кг м/с, г) 1 кг м/с, д) 1.41 кг м/с, е) 1.73 кг м/с, ж) 2 кг м/с.	г) 1 кг м/с 0.001 кг*1000 м/с*sin30°=1 кг м/с
неооходимом для решения задач профессиональной деятельности.	Продемонстрируйте владение навыками вычислять КПД тепловой машины: Во сколько раз увеличится КПД идеальной тепловой машины, если температура нагревателя повысится от	а) 1,5, б) 2, в) 2,5, г) 3, д) 4	г) В 3 раза. (600-300)/(400-300)=3

400 К до 600 К? Температура		
холодильника 300 К.		
Продемонстрируйте владение	а) не изменится, б) уменьшится в 2,5 раз, в)	д) увеличится в 25 раз
навыками вычислять энергию	увеличится в 2,5 раза,	д) увеличится в 25 раз
магнитного поля:	г) увеличится в 5 раз,	
Во сколько раз изменится энергия	д) увеличится в 25 раз	
магнитного поля соленоида, если силу	д) увеличител в 25 раз	
тока в нем увеличить в 5 раз?		
Продемонстрируйте владение	а) 1 см ⁻¹ , б) 10 см, в) 100 м,	$\alpha = 100 \text{ m}^{-1}$
навыками оценивать интенсивность	г) 10 м ⁻¹ , д) 100 м ⁻¹	W 100 W
волны, прошедшей слой поглощающего	1) 10 M , A) 100 M	$e^{-1} = e^{-\alpha \times 0.01}, \ \alpha = 1/0.01 =$
вещества:		100
Чему равен коэффициент поглощения		
среды α толщиной 1 см, если		
интенсивность света, прошедшего через		
среду уменьшилась в е раз?		
Продемонстрируйте владение	а) не изменится, б) увеличится в 1.5 раза, в)	в) уменьшится в 2 раза.
навыками оценивать интенсивность	уменьшится в 2 раза, г) свет не пройдет через	, ,
волны, прошедшей через поляризатор:	поляризатор.	
Как изменится интенсивность		
естественного света, прошедшего через		
поляризатор?		
Продемонстрируйте владение		Абсолютная погрешность
навыками определять вид		измерения тока 0,02 А.
погрешностей при измерении		Относительная
физических величин:		погрешность измерения
Результат измерения тока в цепи		1%.
амперметром записан в виде: $I = 2,00 \pm$		
0,02 А. Чему равна погрешность		0,02/2=0,01=1%
измерения и как она называется? Какова		
относительная погрешность измерения?		
Продемонстрируйте владение	а) 3%, б) 4%, в) 5%, г) 6%, д) 7%, е) 8%.	5%
навыками правильно рассчитать		

66	еличину относительной погрешности	$(4^2+3^2)^{1/2}=5$
nj	ри измерении физических величин:	
K	Сакова относительная погрешность	
из	змерения сопротивления с	
и	спользованием закона Ома, если	
O'.	тносительная погрешность измерения	
На	апряжения вольтметром 4%, а	
O'.	тносительная погрешность измерения	
TO	ока амперметром 3%.	

Разработчик оценочных материалов, д.ф.-м.н., профессор, заведующий кафедрой «Физика» 25 декабря 2024 г.

Е.Н. Бодунов